Ben je op zoek naar computational aspects of modular forms and galois representations? Bekijk onze boeken selectie en zie direct bij welke webshop je computational aspects of modular forms and galois representations online kan kopen. Ga je voor een ebook of paperback van computational aspects of modular forms and galois representations. Zoek ook naar accesoires voor computational aspects of modular forms and galois representations. Zo ben je er helemaal klaar voor. Ontdek ook andere producten en koop vandaag nog je computational aspects of modular forms and galois representations met korting of in de aanbieding. Alles voor veel leesplezier!
Modular forms are tremendously important in various areas of mathematics, from number theory and algebraic geometry to combinatorics and;
Vergelijkbare producten zoals Computational Aspects of Modular Forms and Galois Representations
in Arithmetic Geometry in the 2009-2010 academic year. The notes by Laurent Berger provide an introduction to p-adic Galois representations and;
Vergelijkbare producten zoals Elliptic Curves, Hilbert Modular Forms And Galois Deformatio
The development of new computational techniques and better computing power has made it possible to attack some classical problems;
Vergelijkbare producten zoals Computational Aspects Of Algebraic Curves
collection of contributions covers a range of topics in number theory, concentrating on the arithmetic of elliptic curves, modular forms, and Galois;
Vergelijkbare producten zoals Elliptic Curves, Modular Forms and Iwasawa Theory
of Galois representations attached to modular forms, rational points on elliptic and modular curves, modularity of some families of Abelian;
Vergelijkbare producten zoals Number Theory Related to Modular Curves
The area of automorphic representations is a natural continuation of studies in the 19th and 20th centuries on number theory and modular;
Vergelijkbare producten zoals Automorphic Forms And Shimura Varieties Of Pgsp(2)
field theory, constructive Galois theory, computational aspects of modular forms and of Drinfeld modules * computational algebraic geometry;
Vergelijkbare producten zoals Algorithmic Algebra and Number Theory
The area of automorphic representations is a natural continuation of studies in number theory and modular forms. A guiding principle is a;
Vergelijkbare producten zoals Automorphic Representations Of Low Rank Groups
Automorphic forms and Galois representations have played a central role in the development of modern number theory, with the former coming;
Vergelijkbare producten zoals Automorphic Forms And Galois Representations: Volume 1
This book presents a graduate student-level introduction to the classical theory of modular forms and computations involving modular forms;
Vergelijkbare producten zoals Modular Forms
This monograph provides a brief exposition of automorphic forms of weight 1 and their applications to arithmetic, especially to Galois;
Vergelijkbare producten zoals An Introduction to Non-Abelian Class Field Theory
theory and results on elliptic modular forms, including a substantial simplification of the Taylor-Wiles proof by Fujiwara and Diamond. It;
Vergelijkbare producten zoals Modular Forms And Galois Cohomology
arithmetic theory of Hilbert modular forms, its L-series, and into elliptic curves over number fields. This work is inspired by the classical theory;
Vergelijkbare producten zoals Jacobi Forms Finite Quadratic Modules and Weil Representations over Number Fiel
Automorphic forms and Galois representations have played a central role in the development of modern number theory, with the former coming;
Vergelijkbare producten zoals Automorphic Forms & Galois Representati
over number fields. The Langlands correspondence is a conjectured link between automorphic forms and Galois representations over a global field. By;
Vergelijkbare producten zoals Cohomology of Drinfeld Modular Varieties, Part 1, Geometry, Counting of Points and Local Harmonic Analysis
over number fields. The Langlands correspondence is a conjectured link between automorphic forms and Galois representations over a global field. By;
Vergelijkbare producten zoals Cohomology of Drinfeld Modular Varieties, Part 1, Geometry, Counting of Points and Local Harmonic Analysis
This collection of survey and research articles brings together topics at the forefront of the theory of L-functions and Galois;
Vergelijkbare producten zoals L-Functions And Galois Representations
proof relies on basic background materials in number theory and arithmetic geometry, such as elliptic curves, modular forms, Galois;
Vergelijkbare producten zoals Fermat's Last Theorem
Modular forms are functions with an enormous amount of symmetry that play a central role in number theory, connecting it with analysis and;
Vergelijkbare producten zoals Modular Forms on Schiermonnikoog
This volume collects lecture notes and research articles from the International Autumn School on Computational Number Theory, which;
Vergelijkbare producten zoals Notes from the International Autumn School on Computational Number Theory
The arithmetic properties of modular forms and elliptic curves lie at the heart of modern number theory. This book develops a;
Vergelijkbare producten zoals Elliptic Curves and Big Galois Representations
very rich, leading us to classical themes such as theta series, Siegel modular forms, the triality principle, L-functions and congruences;
Vergelijkbare producten zoals Automorphic Forms and Even Unimodular Lattices
curves, modular functions, modular curves, Galois cohomology, and finite group schemes. Representation theory, which lies at the core of Wiles;
Vergelijkbare producten zoals Modular Forms and Fermat's Last Theorem
Let $F$ be a number field. These notes explore Galois-theoretic, automorphic, and motivic analogues and refinements of Tate's basic result;
Vergelijkbare producten zoals Variations on a Theorem of Tate
is the first to provide a detailed and self-contained introduction to this theory. The close connection between the absolute Galois groups;
Vergelijkbare producten zoals Galois Representations and Phi, Gamma-modules
The theory of modular forms is a fundamental tool used in many areas of mathematics and physics. It is also a very concrete and fun;
Vergelijkbare producten zoals Modular Forms
Cohomology of Drinfeld Modular Varieties provides an introduction, in two volumes, both to this subject and to the Langlands correspondence;
Vergelijkbare producten zoals Cambridge Studies in Advanced Mathematics Cohomology of Drinfeld Modular Varieties
Einde inhoud
Geen pagina's meer om te laden'